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Abstract. An attempt has been made to carry out an overall calculation of the various 
damping rates of phonons in order to highlight the dynamic picture of non-equilibrium 
phonons arising in a metal film excited by laser. Thc calculations are compared with the 
experimental results and found to be consistent. 

1. Introdnetion 

Since Bron and Grill [I] investigated the evolution of the phonon pulse with a phonon 
spectrometer, studies of the dynamics of non-equilibrium phonon in films excited by a 
laser have received wide attention. Experimentally, it was pointed out [24] that, while 
the laser beam’irradiates the film surface, it is first absorbed by electrons and makes 
their temperature much higher than that of the lattice. The electrons thermalize rapidly 
and then cool by transfening energy to the lattice via electron-phonon scattering. 
Theoretically, Klemens [5] calculated the lifetime of phonon in terms of the Gruneisen 
parameter. Recently, calculations of the phonon lifetime in crystals of cubic symmetry 
have been reported [MI. They are all based on non-linear elasticity theory including 
anisotropy, with dispersion neglected. Calculation results show that the lifetime is 
proportional to the inverse lifth power of phonon frequency. These calculations can be 
used to analyse the intrinsic damping of phonons governed by the spontaneous decay 
via cubic anharmonicity , especially for the damping in different propagation directions. 
However, we find that only a few attempts have been made so far to calculate the decay 
of high-frequency phonons due to electron and phonon interaction. Based on the 
generalized Kadanoff-Baym equation of the non-equilibrium Green function [121, this 
paper presents an attempt to carry out an overall calculation of various damping rates 
of phonon in order to highlight the dynamic picture of non-equilibrium phonons arising 
in a metal film excited by a laser. Making use of the experimental parameters in [l], we 
compare our calculation with the experimental results and find it to be consistent. 
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2. Phonon Boltzmann equation 

As can be seen from the previous experimental work [4,10] a laser pulse of picosecond 
duration created a non-equilibrium conduction electron distribution. Then, during the 
relaxation processes of these excited electrons, non-equilibrium phonons with high 
frequencies were observed to be created as a result of the non-radiative transition of 
electrons. In this section, we shall investigate the dynamics of these non-equilibrium 
phonons after excitation by the laser pulse. Obviously, it is a system of electron-phonon 
interaction and the Boltzmann equations describe the dynamics of electrons and phonons 
coupling with each other. To simplify the problem, we may note that the electron- 
electron scattering time is expected to be about 2.1 X lO-I3s [9] in metal Cu at low 
temperatures. On the other hand, the theoretical calculations [ l l ]  indicated that the 
electron-phonon scattering times in Cu, Mg and Au me in the range (2-10) x lo-'" s 
(T= 2 K). This implies that, during the period of interaction between an electron and 
a phonon, the interactions between electrons will happen thousands of times. In other 
words, the electron system seems to be always in an equilibrium state corresponding to 
the dynamics of interaction system between electrons and phonons. Thus, we shall treat 
the electron system as a heat bath without internal interaction, and the dynamics of the 
interaction system are determined by the phonon system including the interaction 
between electrons and phonons. Under this assumption, the coupled set of transport 
equations can be reduced to a single-phonon Boltzmann equation. 

The pulse length used in the experiment [l] is about lo-* s which is longer than the 
time scale of interest. So we can assume that the external disturbance varies slowly in 
space and time. According to the Kadanoff-Baym [ E ]  equation, we have 
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( a / J T + V , w . V R ) D , : ( g , w ; R , T ) =  - D ; ( q , w ; R ,  T ) n > ( q , w ; R , T )  
+ D i ( q ,  w;R, T)nc(ql, w;R, T )  (2.1) 

whereD; and D i  are thecorrelationfunctionsof thejth branch phonon with wavevector 
q and frequency w ,  and R and Tare the macroscopic variables in space and time. The 
self-energies IT and nc of phonons come from two terms. If we consider only the first- 
order approximation, one of these results from the contribution n, from the electron- 
phonon interaction, and the other is due to the contribution ISph from the phonon- 
phonon interaction: 

n" = nz + n$, (2.2) 
If we make use of the spectral function AJo), the correlation function of phonon 

can be described as 
D;(q,  w ; R ,  T )  =Ajj(w)N(q, w;R, T )  
Di(q,w;R,  T)=A;j(w)[l +N(g,w;R,T)I (2.3) 

where N(q,  w ;  R, T )  is the distribution function of phonons. 

spectral functions have a &like character: 
Kadanoff and Baym [12] assumed that, in the case of weak non-equilibrium, the 

A;j(w) = 2n6(w - mi,). 

(a/aT+ V , U . V R ) N , ( ~ )  = -n>(q,w,;R, T)N,(w)  

(2.4) 
Substituting equation (2.3) and (2.4) into equation (2.1) and integrating the equation 

over w from 0 to m, we obtain 

+ nc(q, Ujq;R ,  + Nj(O) ]  (2.5) 
whereNi(o)=N(q,wi,;R, T). 
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In the first-order approximations, the self-energies II: and n: take the following 
form [13]: 

X G>(k + q, E + mi,; R ,  T)GC(k,  E; R ,  T )  (2.6) 
in which V,  is the electron-phonon interaction matrix element, G' and GC are the 
correlation functionsoftheelectron withthe wavevectorkandenergy E. In thesituation 
discussed above, they can be written as 

G<(k,  E ;  R ,  T )  = %6(E - E k ) f ( k ,  E; R ,  T )  

G'(k, E; R ,  T )  = %6(E - Ek)[ l  - f ( k ,  E ;  R ,  T ) ]  (2.7) 
with@, E; R ,  T )  the distribution function of the electrons. 

If weconsider only the lowest-order approximation of phonon decay in three-phonon 
anharmonic process due to cubic anharmonicity, the self-energies rI& and nP<h can be 
written as [14] 

x o , 5 1 ( 4 - q 2 r ~ I q  - w z ; R ,  T)D:,,(qz,wz;R, T )  (2.8) 

in which V3(-qj, qJ , ,  qZiz) are the three-phonon interaction matrix elements. In terms 
of equations (2.3), (2.7), (2.6) and -(2.8) and after soma integration, we obtain the 
phonon Boltzmann equation 

(J/aT + V , w .  VR)Nj(w) = 4 n  -1 V ,  I26(Ek - Ek-, - w 9 )  I (g3 
x -f(Ek)If(Ek-,)Nj(w) - f ( E k ) [ l  -f(Ek-,)IP + Ni(W)ll 

wheref(Ek) =f(k, E , ; R ,  T). 

3. Numerical calculation and discussion 

In order to find out the damping rates, we assume that 

Ni(qw;R,  T ) = q ( w ) + S N i  f ( k , E k ; R , T ) = f ' ( E k ) +  Sfk (3.1) 

where = 6Ni(qw; R ,  T )  and Sfk = Sf(kEk; R ,  T ) .  Np(w) andf'(E,) are the Fermi 
and Bose-Einstein distribution functions, respectively, Nil (qw; R ,  T) and 
Ni2(qw;R, T) are in thermal equilibrium (e.g. Nj , (qw;R,  T) = q , ( w , ) ,  
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Nj,(qo,R,  T )  = y2(w2)). Substituting equation (3.1) into equation (2.9),  if we retain 
only the linear terms, we have 
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The damping rates of the modes of diffusing particles can be obtained from the 
isotropic part of the Boltzmann equation with all gradients neglected [ U ] .  The functions 
6Nj,  d fk-q  and 6fk are now independent of the momentum direction. Thus, the only 
angle that enters the collision operator in equation (3.2) is the angle between k and q; 
we can write 

Consequently, we can make the substitution k+ k - q. Integrating equation (3.2) 
over themagnitudeofthemomentum,we havethedampingratesofphononsindifferent 
processes: 

(3.3) 

(3.4) 

dk 
rb(w)=4nImIvqIz6(Ek -Ek-q  - wq)[fo(Ek-q)  - f o ( E k ) l  

rb (E)=42j72;; i3 ivq lZ6(Ek dq -Ek-q -wq) [ l  +@(wq)- f ' (Ek-q) l  

A diagrammatic representation of each of the damping rates is given in figure 1 .  
In order to obtain equation (3.5),  we have made a substitution of k - q-+ k. 
If we consider the simple electron-phonon interaction model, the square of the 

electron-phonon interaction matrix element is given by [16] 

I v, 12 = 62q2/2wqp,.  (3.7) 

Here, 6 is the electron-phonon coupling constant. If we consider only phonons of long 
wavelength compared with the lattice spacing, the deformation potential model can be 
used and CY takes the value -f EF [17] ,  where EF is the Fermi energy. pm is the mass 
density and oq = VLq where V ,  the longitudinal phonon velocity and q the wavevector 
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s P 
Figure 1. Various decay pmcesses considered in this 
work -,electrons; -. phonons. The mark 6 
beside the line denotes non-equilibrium occupation 
probability. 

Figure 2. Decay rate at different electron energies 
E: -, rh(E);---,r$(E);-.-, r;(o). 

of the phonon. We calculate equations (3.3)-(3.5) in t e r m  of equation (3.7). The final 
results are 

rlp(w) = ( 6 2 m 2 T k B / ~ V L p , f i 4 )  I n N l +  exp(E/k,T)/(exp[(E - fiw)/k,q + I}] 

rb(E) = (szm/2~rv:p,k,,h2){o3/3 + 2 .4 ( /~ ,T / f i )~  - oJ2(kB~/fi) 

r;(E) = (1.26Zm/zV4Lp,k,,h2) ( k ~ / f i ) ~ [ l  + exp(-E/kBT)]. (3.10) 

Klemens [5] calculated the decay rate of the longitudinal phonon based on the 
perturbative approaches in which the anharmonic interactions are described in terms of 
the Griineisen parameter. We use the same form of the coupling coefficient as that used 
by Klemens. Thus, 

(3.11) 

in whichyistheGriineisenparameter,Mistheatomicmassanda3is the atomicvolume. 
In the isotropic case, three-phonon anharmonic decay will occur only for longitudinal 
phonons [18], i.e. L +  L + T o r  L+ T + T. Hot electrons can also lose energy through 
the emission of LO phonons. However, Orbach [19] has shown that the occupation 
number of the acoustic phonons created will be strongly enhanced over the occupation 
number of k = 0 optical phonons in the spontaneous decay of LO phonons into two LA 
phonons, which is the major process of optical phonon relaxation. The collinear process 
L-P L + L is also possible, but from a final-density-of-states argument the decay rate is 
small compared with other processes. Hence, we consider here the dominant decay 
channels of LA phonons, LA+ TA + LA and LA + TA + TA. 

Substituting equation (3.11) into equation (3.6) and carrying out some calculations, 
we obtain 

(3.8) 

x expK-E + f i w ) / k ~ q }  (3.9) 

/v3(-d, q i j i ,  q2h)IZ = 4hyZa3/3MVt(wiqwi,q,w,,q,) 

r2 , , (W)  = r,&,A+, = (16..hr2/mv~wB)(VL/VT)2f(w, T) (3.12) 

rZ,,(w) = rLA-LA+TA = (8nfir2/mv2,w8)f(w T )  (3.13) 
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Table 1. Parameters used for the quantitative calculation. 

Parameter V, VT k, P. (Y T 

Data 5.24kms-' 2.64kms-' 1.72 x 10'Om-' 8.Bogm'' -7.0eV IOK 
Source [I] Dl Ill PI 111 

Table 2. ?be calculation results 

Decay rate (s-I) 1.20 x loio 1.20 x loro 1.76 X IO9 3.49 X IO' 4.40 X IO6 
LiIetime (s) 8.30 x lo-'' 8.30 x IO-" 5.68 X 10.'' 2.87 X 2.28 X lo-' 

with 

flu, T )  = w5/60 + 2 . 4 ( k g T / h ) 3 ~ 2  - 12.8(k5T/h)4w + 2 4 . S ( k ~ T / h ) ~  (fiw > k,T) 
(3.14) 

where w = wq. VTis the transverse velocity of sound and wD is the longitudinal Debye 
frequency of phonon. 

Theresultisdifferent slightlyfromthatobtained byKlemens[5], because weconsider 
the condition hw > kBT, instead Of kgT > tfiw in [5] .  In addition, we do not first choose 
wl,ql = w12q2 = &col q. Under the condition hw %- kBT, only the first term remains in 
equation (3.14) and r'$ 0~ w5  which is similar to the results of other workers [5-81. 
However, if hw is only slightly larger than kBT, this w5-dependence of decay rates will 
break down; this has been verified experimentally [20]. Obviously, we have V ,  > VT 
(typicallya= (VJV,) = 9[5]),so theprocessLA-+Tn + TAdominatesover the process 
 LA^ LA + TA by a factor of 4.5, which is compatible with the calculation made by 
Tamura [21].  

Quantitative calculations of the damping rates of phonons due to the spontaneous 
decay were performed for constantan. The parameters needed for calculation are listed 
in table 1. Figure 2 shows the decay rates for various energies of electrons at w = 
6.28 THz. In our situation, the results can be fitted to those listed in table 2. 

The experimental results of electron-phonon interaction time which were found to 
be 3 x IO'" s < rep < 8 X lO-'Os [22] are in agreement with our calculations. 

From table 2, we can see that rb/rt is equal to 6.8. This implies that hot electrons 
emit phonons seven times faster than equilibrium phonons excite hot electrons to a 
higher energy level. It can be understood physically that the great mismatch between a 
hot-electron energy and a phonon energy requires several collisions before the excited 
electrons reach equilibrium with the lattice. Comparing equation (3.9) with equation 
(3.10), we can see that this difference appears only under the condition hw > ksT. It is 
the very effect of the interaction between electrons and high-frequency phonons excited 
by an ultrashort laser pulse. In the circumstance of normal thermal excitation, the 
frequency of the phonons is about lo9 Hz; so fiw Q kBTand the decay rates rb and r; 
will have the same form (as can be seen from figure 2, the term exp(-E/k,T) can be 
neglected); then the difference will vanish. We also find that rb/r$, = 50.4 in table 2. 
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This may illustrate that the lifetime of high-frequency phonons will delay to the time of 
theelectron-phonon interaction. In other words, inourcase, thephonon thermalization 
may delay in time to that of the electron-phonon interaction process, because the 
phonon-phonon collision is responsible for the thermalization of the phonon gas. 

It is worth mentioning that there is much research into the non-equilibrium process 
in semiconductors. Because of different aims and study time scales, these investigations 
all placed an emphasis on the relaxation of hot electrons. In contrast with them, we study 
the dynamics of phonons in metal films, which may be useful for investigating some 
transient behaviour related to the dynamics of non-equilibrium phonons. Zhou Benlian 
[23] has observed a delay in thermal expansion under rapid heating. It may be explained 
in terms of the thermalization and propagation of the phonon gas and further work is in 
progress. 

4. Conclusion 

In conclusion, we believe that our calculation is helpful in clarifying the picture of the 
dynamics of non-equilibrium phonons in a metal film excited by a laser and can c o n h  
quantitatively the phenomenological analyses [2,3]. 
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